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Two-tier symmetry-breaking model of patterns on a catalytic surface
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We present a two-tier symmetry-breaking model on a catalytic surface mediated by propagating transition
fronts on two different scales. On the microscopic~nanoscale! level, there is a competition between two
alternative surface phases biased by the local level of a diffusing species. On the microscopic scale, relative
abundance of surface phases acts as a refractive variable biasing the balance between alternative states of the
diffusive activator, thereby causing either global oscillations or domain oscillations and spiral waves in an
extended system. The distribution of surface phases evolves on a longer time scale due to a curvature effect,
exhibiting a kind of a ripening process coupled with oscillatory dynamics.@S1063-651X~98!13506-7#

PACS number~s!: 82.65.Jv, 05.70.Ln
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I. INTRODUCTION

Single-crystal studies of catalytic CO oxidation on Pt s
faces conducted in recent years revealed a whole rang
different spatiotemporal patterns@1–6#. On Pt~110!, besides
elementary patterns like spiral waves@1,3#, complex struc-
tures involving different types of patterns on different leng
scales were also found@6#. The mechanism of the rate osci
lations and patterns is based on adsorbate-induced su
phase transitions that are controlled by critical adsorb
coverages, i.e., the 131
132 transition in the case o
Pt~110! and the 131
 hexagonal phase transition in th
case of Pt~100! @1,2,7,8#. The phase transition affects th
reaction rate through the variation of the oxygen stick
coefficient which for Pt~100! is 2–3 orders of magnitude
higher on the 131 surface than on the reconstructed pha
whereas the corresponding factor for Pt~110! is only about
1.5.

At this time, the standard kinetic model of CO oxidatio
on Pt~110! includes three dynamic variables, the CO a
oxygen coverage, and the fraction of the surface occupied
one of the alternate phases~surface variable! @9#. The equa-
tions for the adsorbate coverages contain the usual kin
expressions of the Langmuir-Hinshelwood type where
coefficients can be made dependent on the surface vari
thus accounting for the different adsorption rates and bind
energies on the two surface phases; actually, the dec
difference turned out to be the difference in the oxygen sti
ing coefficient. The phenomenological dynamic equation
the surface variable is constructed in such a way that the
active 132 phase is present at low CO coverage and
more active 131 phase exists at high CO coverage.

Although the model contains three dynamic variables
turned out to be qualitatively equivalent to a two-variab
model, and can be mapped on a standard FitzHugh-Nag
~FN! system @10#. The oxygen coverage is more or le
slaved to the CO coverage which plays the role of a ‘‘f
activator.’’ At a fixed surface phase composition, two alt
nate stationary states may be attained: one with a high
coverage that blocks the oxygen access and thereby s
the reaction, and another with a low CO coverage and hig
PRE 581063-651X/98/58~2!/2065~6!/$15.00
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reaction rate. This bistability phenomenon is common
bimolecular reactions with Langmuir-Hinshelwood kinetic
The domains with prevailing alternative stationary sta
evolve dynamically due to a relatively slow surface pha
transition, so that the surface variable plays the role o
‘‘slow inhibitor.’’

The surface phase transition acts in such a way that
fraction of the 131 phase increases on a surface patch w
a high CO coverage, leading to an increased O2 adsorption
rate and eventually to a transition to the alternate state,
vice versa. In a lumped system, this leads to relaxation o
cillations, and in a spatially extended system, to propaga
of surface activity waves, forming either spiral waves, tar
patterns, or isolated mobile wave fragments@1,9–12#. The
geometry of the emerging spatiotemporal structures
strongly affected by the anisotropy of surfac
diffusivities—a property that distinguishes patterns on s
faces from chemical patterns in liquid phase reactions. G
bal interactions through the gas phase serve as an addit
source of dynamic complexity leading to standing waves a
cellular structures@3–6,10,13,14#.

The model by Krischer, Eiswirth, and Ertl@9# yields a
realistic ~at least in the qualitative sense! picture of kinetic
oscillations and pattern formation on the Pt~110! surface. Its
disadvantage, however, is that it does not lend itself to
formal treatment of the dynamics of surface reconstructi
described in a purely phenomenological way with the help
a piecewisely defined function of the CO coverage that
sures correct behavior fitting the experimental data. T
model also fails to take into account slow changes in ca
lytic activity which may be caused by surface rougheni
and faceting@15–17#. These two aspects are in fact relate
since surface roughening is likely to occur as a result
repeated transitions between the two surface phases, w
due to their different density of surface atoms, involve
mass transport of Pt atoms@18#. Roughening or faceting
might be incorporated into the kinetic model in a natural w
if the phase transition could be described more realistic
by means of a microscopic model.

In this paper, we present a two-tier symmetry-break
model treating the surface phase transition explicitly and
2065 © 1998 The American Physical Society
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2066 PRE 58PISMEN, IMBIHL, RUBINSTEIN, AND MONIN
placing the phenomenological equation of the surface v
able by a microscale model that would describe dynamic
domains corresponding to the two surface phases. The
sence of the model is the assumption that the surface p
transition is a slow local process that leads to the forma
of a nanoscale pattern of surface phases, and manifests
in slow motion of interphase boundaries with the speed be
dependent on the local value of CO coverage. In turn,
visible ~microscale! coverage pattern is determined by ave
age abundance of surface phases within the diffusional ra
of the adsorbed species. The faceting of the surface ma
directly correlated in this model with the motion of inte
phase boundaries, and takes place each time a certain
tion is passed by the phase transition front.

II. COARSE-GRAINED TWO-TIER MODEL

Our current aim is to sketch a skeleton model that can
treated semianalytically to construct a qualitatively faith
dynamic description. We shall operate, therefore, with
simplest possible nonlinear elements suitable for our purp
and neglect such realistic details as anisotropic diffusi
Rather than considering realistic kinetic equations for
adsorbate coverages, we shall use a single equation for
centration of a fast activatorv that can relax to any of two
alternate states. The simplest suitable evolution equationv
is

v t5¹2v1~12v2!v2h. ~1!

As in the standard FN model, the two states are biased by
level of the inhibiting variableh, which is defined here in
such a way that the levelh50 corresponds to the Maxwe
construction of the two alternate macrostates. We interpr
here as a surface state variable that models the inhib
action of the 132 reconstruction. In view of the long diffu
sional range of CO adsorbate~modeled by the activator con
centrationv), the variableh should becoarse grained. We
shall interpret it as thelocal averagefraction of one of the
surface phases computed by spatial averaging over a su
area within the diffusional range ofv. The activator acts as
pattern-forming agent on a large scale corresponding to
diffusional range of a mobile adsorbed species~CO!. This is
the visible pattern observed experimentally on a 1024

21022 cm scale. The surface variableh , which is slow and
nondiffusive, plays the same role of a refractory variable
in the model by Krischer, Eiswirth, and Ertl@9#.

The distinctive feature of the present model lies in desi
ing the evolution equation of the surface variable. On
smaller length scale~in a 102721026 cm range!, we conjec-
ture a dynamic pattern of surface phases, consisting o
lands of a minority phase immersed in a continuous majo
phase. Unlike the phenomenological model by Krisch
Eiswirth, and Ertl@9#, we describe the surface state using
‘‘microvariable’’ u that can relax to two alternate stat
standing for the surface phases. The dynamics of the mi
variable is described by a nonlinear diffusion equation wit
cubic nonlinearity:

g21ut5d2¹2u1~12u2!u2av, ~2!
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whered!1 is the ratio of the microscopic and macroscop
scales, which is proportional in the physical model to t
square root of the ratio of the surface diffusivities of Pt a
CO ~adsorbate!. Since Pt diffusivity is small, the border
between the surface phases can be assumed to be a
atomically sharp.

The local value of long-range variablev introduces a bias
in favor of one of the surface states. If the coupling para
etera is positive, the lower state advances when the mac
variable v ~modeling CO coverage! is positive. The two
phases coexist atauvu,b52/A27. The speed of the motion
~neglecting the curvature effect! is

c5A6 dgsin@ 1
3 arcsin~ 1

2 A27av !#[dgc~av !. ~3!

The dynamics of the surface phases described by
model can be made similar to the dynamics of the surf
variable in the phenomenological model of Krische
Eiswirth, and Ertl@9#. The two values of the CO coverag
where the definition of the phenomenological function
changed should correspond to the limitsv56b/a of the
range ofv where the two surface states coexist.

The macrovariablev in turn is affected by the relative
abundance of surface phases, described by the coarse-gr
variableh. A general relation betweenh and u can be de-
fined as

h~x!5b̂S E g~x,x8!u~x8! dx82 ŝD , ~4!

whereg(x,x8) is a coarse-graining kernel with a characte
istic range ofO(1) in the chosen dimensionless units a
b̂, ŝ are constants. Assuming sharp interphase borders,h can
be directly related to the surface-averaged area covere
the lower surface stateu,0:

h~x!5bS E g~x,x8!H~x8! dx82sD , ~5!

whereH(x) is 1 if the pointx is within a domain occupied
by the lower state, and 0 otherwise, andb,s are modified
constants.

III. GLOBAL OSCILLATIONS

The simplest solution of the coarse-grained equation
obtained under conditions where the diffusional range of
macrovariablev encompasses the entire surface so tha
plays the role of a global variable obeying Eq.~1! integrated
over the entire surface:

v t5~12v2!v2h. ~6!

Then the integrals in Eqs.~4!,~5! can be evaluated over th
entire surface as well, and the coarse-graining kernelg(x,x8)
set to unity. If we assume that the lower surface state
minority phase, and exists in the form of circular islan
~sufficiently widely separated, so that their interaction can
neglected!, Eq. ~5! can be rewritten as

h5bS E f ~r !r 2dr2sD5b~n^r 2&2s!, ~7!
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PRE 58 2067TWO-TIER SYMMETRY-BREAKING MODEL OF . . .
where f (r ) is the instantaneous number density of islan
with the radiusr andn is the total number density of island
The parameters can be interpreted as the surface fracti
corresponding to the Maxwell construction of the two ma
rostates. This value serves in our model as a bias param
Assumingb.0, negative values ofv prevail ath.0. The
multistability range isuhu,b52/A27.

For the moment, we neglect the dependence of the bou
ary speed on the curvature~presuming that the islands ar
much larger than the diffusional range of the microvariab!.
Then the change of radii is governed by Eq.~3! which can be
transformed by averaging to the evolution equation ofh:

dh

dt
52bndgc~av !^r &~h!. ~8!

For any fixed size distributionf (r ), the mean radiuŝr &
can be expressed through the mean squared radius^r 2&, and
then expressed throughh with the help of Eq.~7!. As long as
the dependence of the boundary dynamics on curvatur
neglected, this is also possible for a dynamically evolv
distribution. Indeed, the distribution is then shifted rigid
during the oscillation cycle so thatf (r ;t)5 f „r 1c(h)t… and,
as a consequence, the dispersion^r 2&2^r &2 remains invari-
ant.

If all islands are of the same size,

^r &5An21~s1h/b!5As/n~11h/q!, ~9!

whereq5bs.b. The final form of Eq.~8! is

dh

dt
5Kc~av !A11h/q, ~10!

whereK52bdgAsn.
A typical picture of relaxation oscillations is obtained

g!1. Then the system evolves as follows. If, say, initia
v.0, the lower state advances andh increases. The macro
variablev continuously adjusts to a changing level ofh; it
decreases but remains on the upper branch untilh reaches
the limiting valueh5b. After this, v drops on a fastO(g)
time scale to the lower branch. The islands start to shr
andv grows whileh decreases up to the lower critical valu
h52b, after whichv jumps back to the upper branch~Fig.
1!; both branches of the oscillation cycle are symmetric.

In the limiting case when the macrovariablev is slaved to
h, it can be replaced in Eq.~8! by either the upper or lowe
root of the cubic (12v2)v1h50, respectivelyv6(h). This

FIG. 1. A typical oscillation cycle atg!1; dynamics ofv andh
are shown by solid and dashed curves, respectively.
s

-
ter.

d-

is
g

k,

leaves us with a single dynamic equation, and the resc
half-periodt52bdAsn T is computed as

t5E
2b

b dh

A11h/q c„av6~h!…
. ~11!

The dependence oft on the rescaled bias parameterq and
the coupling parametera are shown in Fig. 2.

The above picture is modified if the changing levels ofv
remove the system from the multistability region of the m
crovariable or if islands shrink and disappear altoget
while the system evolves along the branchv,0. To preclude
the first possibility, one has to require that the maximu
possible value ofv occurring during the above cycle
uvmaxu52/A3 remain within the multistability range. This re
stricts the value of the parametera, 1

3 . If all islands are of
the same size, the minimum radius corresponding toh5

2b in Eq. ~7! is r min5An21(s2b/b), which restricts the
parameterb.b/s.

An arbitrary distribution can be treated in a similar wa
For example, for a uniform distribution of island sizes in t
range^r &2 1

2 D,r ,^r &1 1
2 D, the required relation betwee

the mean and mean squared radii is given by^r 2&5^r &2

2 1
12 D2, so that the radicant in Eq.~9! should be increased b

1
12 D2.

The lower tail of a distribution of island sizes may b
eliminated during a single cycle, but, as long as the curva
effect can be neglected, the residual distribution will rem
stationary~or, more precisely, will rigidly oscillate!. The cur-
vature effect should be felt, however, in the long run, caus
a kind of Ostwald ripening under nonstationary conditio
~see Sec. V!.

FIG. 2. The dependence of the rescaled periodt on the rescaled
bias parameterq and the coupling parametera at g!1.
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IV. LOCALIZED OSCILLATIONS AND WAVES
IN AN EXTENDED SYSTEM

In an extended system (L@1), Eq. ~8! can still be re-
tained as a dynamic equation ofh, with local averaging un-
derstood as in Eq.~5!. At g!1, the system relaxes~starting
from random initial conditions! to a pattern containing do
mains with prevailing alternative states of the macrovariab
The overall character of macroscopic dynamics depends
the value of the dimensionless combinationK. The ideal
form of a propagating plane wave atK!1 is computed in a
standard way by applying a relation analogous to Eq.~3! to
determine the speed of the macroscopic front

C5A6 sin@ 1
3 arcsin~ 1

2 A27h!#[c~h!, ~12!

and then integrating Eq.~10! in the frame moving with this
speed. The resulting half period in space is justtC, wheret
is the half-period of the global oscillation cycle defined
Eq. ~11!.

At moderately small values ofK, a simulation run starting
from random initial conditions leads, following an initial re
laxation period, to domain oscillations that may be also ch
acterized as a highly unharmonic standing wave pattern
typical relaxation oscillation cycle is shown in Fig. 3. In th
first snapshot, the upper state~shown in the light end of the
grayscale! is a minority phase forming bean-shaped macro
lands. These islands grow through front propagation, w
macroislands of the alternative lower state~shown in dark
grays! nucleate within, i.e., at locations that have been oc
pied by the upper state for a long period of time.

The propagation does not, however, proceed all the w
to coalescence of upper-state islands, but is assisted
bulk transition within the lower majority state. The transitio
moment is captured in Fig. 3~c!. Following the transition, the
upper state becomes the majority state, leaving rece
nucleated islands of the lower state. As a result, the
snapshot in the series looks very much like a negative of
original one. This completes the half period of the oscillati
cycle, whereafter the story repeats with the islands of
alternate state but the size of the islands slightly increases
this stage, the overall picture combines features of fr
propagation and coherent oscillations but the pattern is
transitory. The region of coherent oscillations gradua
shrinks, and the final state achieved in the long run i
disordered spiral pattern~Fig. 4!.

V. RIPENING OF SURFACE PHASE DISTRIBUTION

The size distribution of islands of the minority phas
evolves at long times due to a weak dependence of the
locity on curvature:

c5dg@c~av !2kd#. ~13!

For circular islands,k5r 21, and the dynamic equation fo
radii is

dr

dt
[c~v,r !5dgFc~av !2

d

r G . ~14!
.
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The radius distribution necessary for evaluation of the s
face area occupied by the minority phase in Eq.~7! obeys the
first-order partial differential equation~PDE!

] f

]t
1

]„f c~v,r !…

]r
50, ~15!

FIG. 3. A typical transitory oscillation cycle in an extende
system (q50.56, K50.05, a50.3). Snapshots taken at~a! t
5118,~b! t5127,~c! t5131 ~transition moment!, ~d! t5151. Lev-
els of the macrovariablesv ~left! and h ~right! are shown in gray
scale.

FIG. 4. A disordered spiral pattern in an extended systemq
50.56, K50.05, a50.3, t52000). Levels of the macrovariable
v ~left! andh ~right! are shown in gray scale.
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PRE 58 2069TWO-TIER SYMMETRY-BREAKING MODEL OF . . .
which has to be solved together with Eq.~6! where h is
defined by Eq.~7!. Since the velocityc(v,r ) changes sign
during the oscillation cycle, Eq.~15! is ill-suited to a com-
mon finite difference scheme of numerical integration bu
readily solved by the method of characteristics. The cha
teristics are defined by Eq.~14!; sincec(v,r ) is a monotonic
function of r , shocks are never formed, and the distributi
is well behaved. The ripening process should generally l
to slow elimination of smaller islands and growth of th
average island size.

Figure 5 shows the dynamics of the global variablev, the
coverage fractionh, and the mean radius over the length
several periods. The form and period of oscillations chan
slowly, in parallel with slow evolution of the island siz
distribution. The long-time dynamics of statistical charact
istics starting from a Gaussian distribution is shown in F
6. To eliminate short-scale dynamics, all values are co
puted here at the lowest point of each oscillation cycle. D
persion gradually increases, while the skewness beco
negative. Elimination of smaller islands becomes substan
after the lower tail of the distribution has reached the low
cutoff radius. Following this, the island number density d
creases, the growth of the mean radius accelerates, an
trend of the evolution of the skewness reverses, reflec
preferential growth of larger islands. The total area occup
by the islands at the lowest point of each oscillation cycle~as
at any other comparable phase of the cycle! remains constan
to a high degree of accuracy.

FIG. 5. Short-scale dynamics of the global variablev, the cov-
erage fraction h, and the mean radius (d50.02, s52.7, b
50.9, a50.2, g54.0).

FIG. 6. Long-scale dynamics of the number of islandsn, mean
radius^r &, dispersions2, and skewnessg1 of the island size distri-
bution (d50.02, s52.7, b50.9, a50.2, g54.0).
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The growth process may be arrested by the instability
large islands. Saturation of growth can be accounted for p
nomenologically by introducing a dependence of the grow
rate on curvature that has a maximum at a certain point@19#.

VI. BOUNDARY DYNAMICS

The presumption of a circular shape is well justified on
when the interaction between islands is negligible. At high
densities of the minority phase, or, moreover, under con
tions when the phases are interspersed and neither form
connected continuum, the boundary dynamics is gover
locally by Eq. ~13! but the radius distribution is not wel
defined.

We have carried out detailed modeling of the ripeni
process with the help of a Lagrangian algorithm based on
local equation of boundary motion. Each island is rep
sented by its boundary which in turn is approximated a
polygon, i.e., a directed array of the points in a plane, wh
propagates according to Eq.~13! with the velocity dependen
on the instantaneous value ofv and the local curvature ap
proximated by finite differences. The long-scale variablev is

FIG. 7. Snapshots of the ripening sequence taken at~a! t52, ~b!
t510, ~c! t512, and ~d! t566 (d50.02, s513.3, b51.42, a
50.2, g50.2).

FIG. 8. Dynamics of average radius~defined as ratio of total
ratio S of islands to their total perimeterP! corresponding to the
sequence shown in Fig. 7. A sharp jump att;12 corresponds to
elimination of the smaller island.
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2070 PRE 58PISMEN, IMBIHL, RUBINSTEIN, AND MONIN
treated also in these computations as a global variable,
its dynamics determined by Eq.~6!, whereh is expressed
through the total instantaneous area of the islands. The c
putation algorithm includes updating the boundary, check
for intersections, computation of the area, and updating ov.

A typical ripening sequence obtained by numerical sim
lation is shown in Fig. 7. As expected, the ripening proc
leads to elimination of smaller islands, while the survivi
islands approach a circular shape. The average radius
fined as the ratio of the perimeter to the area occupied by
minority phase, exhibits steady growth on the background
oscillations as seen in Fig. 8.

The ripening can be suppressed on a rough surface. S
induced roughening may be caused by surface modifica
taking place at locations traversed by the transition front
tween the alternate surface states. The surface modifica
may also compensate the ripening process by gradually
ering the upper limit of island growth during an oscillatio
cycle. The effect of stabilization of surface phase distribut
due to reactive roughening will be described in a forthco
ing paper.
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VII. CONCLUSION

The two-tier model described above combines featu
found in the standard FitzHugh-Nagumo model at differe
ratios of characteristic relaxation times and diffusivities
the species involved. On the macroscopic level,v is a fast
activator, whileh plays atg!1 the role of a nondiffusive
slow inhibitor. At the same time, on the microscopic level,u
is a slow short-range activator whilev is a fast long-range
inhibitor. The two levels are related by the averaging pro
dure defining the evolution equation ofh. The physical ori-
gin of the averaging is in sampling of large surface areas
the diffusive macrovariable.

The distribution of surface phases ripens at long times
to preferential growth of larger islands. The ripening proce
may be arrested by surface inhomogeneities, either nas
or developing dynamically in the course of the process.
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